DDR3 SDRAM or double-data-rate three synchronous dynamic random access memory is a random access memory technology used for high bandwidth storage of the working data of a computer or other digital electronic devices. DDR3 is part of the SDRAM family of technologies and is one of the many DRAM (dynamic random access memory) implementations. DDR3 SDRAM is an improvement over its predecessor, DDR2 SDRAM.
The primary benefit of DDR3 is the ability to transfer I/O data at eight times the data rate of the memory cells it contains, thus enabling higher bus rates and higher peak rates than earlier memory technologies. However, there is no corresponding reduction in latency, which is therefore proportionally higher. In addition, the DDR3 standard allows for chip capacities of 512 megabits to 8 gigabits, effectively enabling a maximum memory module size of 16 gigabytes. DDR3 memory provides a reduction in power consumption of 30% compared to DDR2 modules due to DDR3's 1.5 V supply voltage, compared to DDR2's 1.8 V or DDR's 2.5 V. The 1.5 V supply voltage works well with the 90 nanometer fabrication technology used in the original DDR3 chips. Some manufacturers further propose using "dual-gate" transistors to reduce leakage of current.[1]
Not sure which DDR memory your system takes? Here are some tools to help you find compatible DDR Memory.